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ABSTRACT

Based on large-sample stochastic approximations, we obtain
asymptotic bias and mean squared error for the k-class estimators
of an identified but misspecified equation with an arbitrary number
f endogenous variables in a linear simultaneous—equations model.
ered here is the omission of appropriate

The specification error consi

exogenous variables from the equation being estimated.

This paper extends existing results in various respects. It
treats not only consistent estimators but also inconsistent ones, like
ordinary least squares, and it provides conditions under which ordinary
least squares will be preferred among those estimators under study.

It covers géées where the estimated equation contains three or more
endogenous variables. It includes the. limited-information maximum

likelihood as one of the estimators under analysis. It also contains

a rigorous argument for the propriety of the stochastic approximations

from which asymptotic moments of estimators are calculated.
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L. INTRODUCTION AND SUMMARY
Through large-sample stochastic appro: ions, the

effects of misspecification are analyzed for single-equation

maximum like-

estimators (k-class, including limited

lihood, and modified two-stage least squares) of an identified

equation with an arbitrary number of endogenous vari

linear simultaneous equations
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provides various refinement

usefulness and wider applicability of the
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The results are specialized to

variables to further illustr

least squares will dominate

squared error.

Consider a simultaneous system of 1
and assume that the equation to be estimated has
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Note that the expansion in Propositionl is analogous to

have provided a formal framework

can be interpreted as a
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approximation to the estimation exrcor. Furthermore,

is valid for any

the case where k 1s stochastic, we neea a modification

of Proposition I. If k = 0 (1), the indicated orders of

O

the ing expansion fox
k = k_ + + + ¥
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Analogous to Proposition 1, we then have

Proposition 2. For k stochastic, in addition to the

assumptions in Proposition 1, suppose (2.17) holds. Then, for

any nonnegative integer r,
Y Y

¥
8 =0 = ’ Yy (- Jrs -1 :A ~ ; ja"‘l - - r
i %j%OL( 1)°[A, By, )]-A (By+B) 5+By*R)

where Ra and R, are remainder terms, both of order N in
b

probability.

Note that in addition to the obvious difference between the

nonwiggled and wiggled components of 2 and B, terms of order
N and higher negative powers of N 1in the expansions under

stochastic and nonstochastic gk will also differ because of R

"

and R

Y, .

The leading terms in the expansions in Propositions 1 and

are
Corollary 1.
A .
B -8 = wWQF + O (N ) (
(k) = ! ’ =
k) ¢
where, for k nonstochastic,
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For asymptotic mean squared error,

M(k) = w QE(FF')Q"
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where

(3.4)
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nonstochastic, (B 1 and Ml have been evaluated

ghey need not be reported here. Following our earlier convention

let us also use wiggles to denote components pertaining to stochastic
k satisfying (2.17). For k stochastic, the first leading terms

in the moment expression would apply still, if evaluated at kO'
However, succeeding terms will have to ke modified: indeed, @_1/2

will not equal zero, in general, and (ﬁ_ will certainly differ

1
from ﬁ_l.

We end this section with some comments concerning the deter-
mination of ko in (2.17) for the limited information maximum
likelihood estimator. For the general case (arbitrary value for
G in (2.11)), we have no closed form expression for ko for LIML.

1

However, a method of calculating it is as follows.
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