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APPROXTMATTONS TO THE DISTRIBUTION FUNCTIONS OF THEIL'S K - CIASS
ESTTIMATORS IN THE CASE OF TWO INCLULED ENDOGENOUS VARTABLES

ROBERTO S. MARIANO*

1. SUMMARY

Assuming that the sample size N is fixed, we present in this
paper large u asymptotic approximations to the distribution functions
of the k-class estimators. The result, which holds for k non-stochas-
tic and the case of two included endogenous variables, is obtained by
slightly modifying the reduction to cancnical form for the k-class esti-
mator as given in Mariano (2) and then applying the same technique used
in arriving at approximations to the two-stage least squares and ordinary
least squares distributions functions. For example, such technique was
used in Mariano (1) or Mariano (3). Since the 2SLS and OLS esti-
mators belong to the set of k-class estimators (k non-stochastic), the
result given here is a generalization of the approximations to the 2SLS
and OLS distribution functions.

2. 'THE K=CLASS ESTIMATORS

The underlying model is a simultaneous system of G linear
stochastic equations relating G endogenous and X predetermined var-

iables. The equation being estimated may be written as

*The author would like to acknowledge the support of the
Rockefeller Foundation for the research presented in this paper.



y = Yl B + Zl Yi + u (2.1

~

Nx1 NXGI G1X1 NXKl NXKl Nx1

and the reduced form equations for the G;+1 endogenocus variables in-
cluded in (2.1) may be written as

Y = 7 n' + \Y . (2.2)
NX(GI +1) NxK KX(GI"":].) NX(GI+1)

Tn the above equations, the symbols are defined as follows:

Y= (0 Y,) is the Nx(G;+1) matrix of included endogenous
variables,

7, the NxX; matrix of included predetermined variables,
Z, the NxK, matrix of excluded predetermined variables,
7 = (Z; 7,) the NxK matrix of pretermined variables,

V the Mx(G;+1) matrix of reduced form disturbance terms,

I the (G+1)xK matrix of reduced form coefficients,

later to be partitioned as (I} Tj).
Ky K

Tn this model, we assume that all predetermined variables
are exogeneous; the equation being estimated is identified by zero
restrictions on the structural coefficients; the sample size is greater

than or equal to G + K ;3 Z is a matrix of constants and is of full



rank; and finally, the rows of V are mutually independent and identi-
cally distributed as normal random vectors with zero mean vector and
positive definite (G;+1) x (G;+1) oovariance matrix I.

In this set-up, the k-class estimator of § may be ex-

-~

pressed as
Bay = C22' a1 s (2.3)
where
C = kW + (1-k)A, (2.4)
A=Y [1-7; (2,'2))712,"}Y - W¢1+1 (N-K;, £3 M), (2.5)
W=y [2(2'2)712'-2,(2,'2)) 712, VY - w¢1+1(xz, L3 M), (2.6)
M = M,Z," PyZ,73. | 2.7

It can be easily shown that for S = A-W, S is independent of W,

and in terms of S and W,
C=W+ (1-k) S. (2.9)

From the reduction given in Mariano (2), it follows then that

By = Bt we' Ch gty (2.10)



where

Wk - WGIH(KZ’ T¥; M%), (2.12)
S* = WGI+1(N"K’ I#*; 0), (2.13)
1 D' 1
I* = | > (2.14)
A @] I Gl
1 G
0 o)\ !
M* = ~ ’ (2.15)
0 D/ G
1 G
w2 = 0py = 2B'Ip) + B'I508 o (2.16)
and © is a G;xG; non-singular matrix such that
0 5z 0 = I (2.17)
OMo,0" = D (2.18)

where in (2.15) and (2.18), D is a G;x3, diagonal matrix whose main-
diagonal elements are the characteristics roots of 2;; My, arranged

in increasing order. Also, in (2,14),

0 = % (I, - Iz B). (2.19)
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3, ‘THE ‘CASE 'OF “TWO INCLUDED ENDOGENCUS VARTABLES

In this case, there is only one coefficient being estimated

and this is denoted by B. The k-class estimator in canonical forms

reduces to
A _ W A
BO() - B + B*(k) s (3.1)
022
where
g% = E;&L (3.2)
%) c¥yy )

By virtue of (2.11), (2.12), and (2.13), we can further write

m T
I xi* yi* + (1-x) = uj* Vj*
B R R T o (3.9)
?k) T m T ’ y
R yfz + (1-k) z v%z
i=1 j=1
where
m = K2 s
(3.4)
r = N-K,

and the (x.* yi*)'s and (uj* vj*)'s are mutually independent bivariate

normal with common covariance matrix

(1
£k = ( p) (3.5)



and with zero mean vectors except for (xm* \/ m*) which has mean

(o u). Here,

p = 21= B2 (3.6)
w v 022
and
w? = 022 {nzzzé (1-2,(292y) '21]Z,14, (3.7)

2

where M22 is the second row of M2, u° has been referred to in the

literature as the concentration parameter.

Let the variables xi's, v.'sy, u.'s, and vj's be such

1 J
that
}S_* = '1-0 )S‘- + pyi ’ i = 1, 2, svey m (3o8a)
3 Yi L] i = 1, 2, csey In"'l

yi* = (3.8b)

v; +y s 1 =m
uj* = Vi-ﬂ U.j + ij [y :‘ = 1, 2, s0s y r (3.80)
V. = v s 3 =152, ceay . (3.84)

Then the xi's, yi's, \ﬁ's, and vj's are mutually independent

standard normal variables and in terms of these variables,



- m

A : FZ
% = —¢ 3 oy, (02 x.4py.) + u(V1pZ x_ + py.)
B(k) w2 =i i iPY3 m "~ *m
T t
+ (1-k) © v.(/1-p uJ + pv.)y ( 3.9)
521 ¥
,Fz ' m r t
= + — {APZ [ s %y, + +(1-k) ¥ u.v.]| - puly +u)
P ¥ P [i=1 XV; *oux j=1u3v3] puly +u
(3.10)
v.1_9§. z.F.. . p (v. + ]J)PZ
A P , (3.11)
u u
where
F2 = - ’ (3.12)
m=1 2 2 T
T y?2 (y +u)4 + (1-k) 1 v,
i=g 71 M j=1

and z 1is a standard normal random variable independent of Vi, Vs eees

y.

m? V1s V2 eees Vi

From (3.9) and (3.12), it follows that as N is kept

i o i g% —A-p?2 x - = 0 hat the
fixedand p >, plim (u B(k) V1-p X pym) so that t

following theorem holds:

‘Theorem 3.1. For fixed N, the limiting distrdibution of

u vo ~
22 (3
w

) " R) ‘is a standard normal distribution as u > ® .




4, APPROXTMATTIONS

Under the assunption that the sample size N is fixed, we
present in this section a large u asymptotic approximation to the
distribution function of the k-class bestimator. The procedure we apply
is exactly the same as that used in Mariano (3) to approximate the dis-
tribution for of the two-stage least squares and ordinary least squares
estimators. For this reason, we shall simply outline the procedure
and refer the reader to Mariano (3) for a more detailed justification
of each step in the procedure.

For b an arbitrary real number, let

H= (—- p) + p(ym+u)l , (4.1)
t
f{:—i-—{ 9-[): y2+(1k)zv2](—-)+b ( 4.2)
=7 v i p)y. .
2= 120 B ( 4.3)
u u?

.~

Then, the following equalities hold (assuming that N is fixed):

Pr (uB(k) <b) Pr (z < H) (u.u)

Pr (z

A

a4
H) + 0(=) as u » o ( 4.5)
2

A - pE 2 . 2
Pr (2! bt - = I, V4 +(1-k) . \. l\
: u [i:‘_l i ( )]-‘81 ] l

roD) as wo o ( 4.6)
u2



m-1 T
Eofbe - & ( 1z y2 +(1) 7 v.2))
u i=1 1 j=1 ]

ro) as pow 4.7
112

(D) + £ o (D) [PR-mH1+(1307) + 0(2) as y » = .
u ul (4.8)

In the above, 6(¢) and ¢&.+) denote the standard normal density and
distribution functions.

(4.4) is an immediate consequence of (3.11), (3.12), and
(4.1)., In (u.6), z' is a standard normal random variable independent

Of yl, yz, saey ym’ Vl, V2’ seey VvV . (u’.G) is Ob'tained fIOm (u’.s)

by a straishtforward manipulation of the inequality z < H. (4.7) follows
immediately from (u.6%: TFor detailed proofs of (4.5) and (4.8), see

the appendix of Mariano (3).

The following now holds by virtue of (3.1), (3.4), and
(4.8):

Theorem 4.1. In the case of two included endogenous variables

'in the equation being estimated, let the sample size N be fixed. Then

" an approximation to the distribution function of the k-classg estimator is




- 10 -

“ b 5
Pr ((Bn.y-B) < = o(b) + & ad) [D2-Kp+1+(1-k) (N-K)
\L x) - ufo_zé_‘ " [ 2 ]
+ 0(-1-5-) a u->o,
u

"where b is an arbitrary real number,

¢1 )
p = = (op; - B o22) ’
w7022
w? = o1y - 2801 * Boz2
“‘and
; T
w2 = i (npns (1-n @iz 2] Zans

e,
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